Evaluation of a regional air quality forecast model for tropospheric NO2 columns using the OMI/Aura satellite tropospheric NO2 product
نویسندگان
چکیده
Results from a regional air quality forecast model, AIRPACT-3, are compared to OMI tropospheric NO2 integrated column densities for an 18 month period over the Pacific Northwest. AIRPACT column densities are well correlated (r = 0.75) to cloud-free (<35%) retrievals of tropospheric NO2 for monthly averages without wildfires, but are poorly correlated (r = 0.21) with significant model overpredictions for months with wildfires when OMI and AIRPACT are compared over the entire domain. AIRPACT predicts higher NO2 in some northwestern US urban areas, and lower NO2 in the Vancouver, BC urban area, when compared to OMI. Model results are spatially averaged to the daily OMI swath. The Dutch KNMI (DOMINO) and NASA (Standard Product) retrievals of tropospheric NO2 from OMI (Collection-3) are compared. The NASA product is shown to be significantly different than the KNMI tropospheric NO2 product. The average difference in tropospheric columns, after applying the averaging kernels of the respective products to the model results, is shown to be larger in the summer (±50%) than winter (±20%).
منابع مشابه
A high-resolution and observationally constrained OMI NO2 satellite retrieval
This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface level concentrations. The standard 15 NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (~110 × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical ...
متن کاملGround-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument
[1] We present an approach to infer ground-level nitrogen dioxide (NO2) concentrations by applying local scaling factors from a global three-dimensional model (GEOS-Chem) to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Seasonal mean OMI surface NO2 derived from the standard tropospheric NO2 data product (Version 1.0.5, Collection 3) v...
متن کاملDevelopment of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model
In this paper, we present the custom Hong Kong NO2 retrieval (HKOMI) for the Ozone Monitoring Instrument (OMI) on board the Aura satellite which was used to evaluate a high-resolution chemistry transport model (CTM) (3 km× 3 km spatial resolution). The atmospheric chemistry transport was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Qu...
متن کاملData assimilation of OMI NO2 observations for improving air quality forecast over Europe
This paper concerns the improvements of NO2 forecast due to satellite data assimilation. The Ozone Monitoring Instrument (OMI) aboard NASA Aura satellite provides observations of NO2 columns for air quality study. These satellite observations are assimilated, with the optimal-interpolation method, in an air quality model from Polyphemus, in order to improve NO2 forecasts in Europe. Good consist...
متن کاملAdvancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS
We present a new algorithm based on the iterative spectral fitting technique for direct retrieval of nitrogen dioxide (NO2) vertical columns from hyperspectral satellite measurements, and a new spatial technique for separating the stratospheric and tropospheric contributions to the total NO2 vertical columns. This direct vertical column fitting (DVCF) algorithm allows more complete treatment of...
متن کامل